RedDwarfData: a simplified dataset of StarCraft matches

نویسندگان

  • Juan Julián Merelo Guervós
  • Antonio Fernández-Ares
  • Antonio Álvarez-Caballero
  • Pablo García-Sánchez
  • Víctor Manuel Rivas Santos
چکیده

The game Starcraft is one of the most interesting arenas to test new machine learning and computational intelligence techniques; however, StarCraft matches take a long time and creating a good dataset for training can be hard. Besides, analyzing match logs to extract the main characteristics can also be done in many different ways to the point that extracting and processing data itself can take an inordinate amount of time and of course, depending on what you choose, can bias learning algorithms. In this paper we present a simplified dataset extracted from the set of matches published by Robinson and Watson, which we have called RedDwarfData, containing several thousand matches processed to frames, so that temporal studies can also be undertaken. This dataset is available from GitHub under a free license. An initial analysis and appraisal of these matches is also made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dataset for StarCraft AI and an Example of Armies Clustering

This paper advocates the exploration of the full state of recorded real-time strategy (RTS) games, by human or robotic players, to discover how to reason about tactics and strategy. We present a dataset of StarCraft games encompassing the most of the games’ state (not only player’s orders). We explain one of the possible usages of this dataset by clustering armies on their compositions. This re...

متن کامل

STARDATA: A StarCraft AI Research Dataset

We release a dataset of 65646 StarCraft replays that contains 1535 million frames and 496 million player actions. We provide full game state data along with the original replays that can be viewed in StarCraft. The game state data was recorded every 3 frames which ensures suitability for a wide variety of machine learning tasks such as strategy classification, inverse reinforcement learning, im...

متن کامل

An Improved Dataset and Extraction Process for Starcraft AI

In order to experiment with machine learning and data mining techniques in the domain of Real-Time Strategy games such as StarCraft, a dataset is required that captures the complex detail of the interactions taking place between the players and the game. This paper describes a new extraction process by which game data is extracted both directly from game log (replay) files, and indirectly throu...

متن کامل

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

MSC: A Dataset for Macro-Management in StarCraft II

Macro-management is an important problem in StarCraft, which has been studied for a long time. Various datasets together with assorted methods have been proposed in the last few years. But these datasets have some defects for boosting the academic and industrial research: 1) There’re neither standard preprocessing, parsing and feature extraction procedures nor predefined training, validation an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.10179  شماره 

صفحات  -

تاریخ انتشار 2017